skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qi, Xuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blowers, Misty; Hall, Russell D.; Dasari, Venkateswara R. (Ed.)
  2. As we enter the Internet of Things (IoT) era, the size of mobile computing devices is largely reduced while their computing capability is dramatically improved. Meanwhile, machine learning technologies have been well developed and shown cutting edge performance in various tasks, leading to their wide adoption. As a result, moving machine learning, especially deep learning capability to the edge of the IoT is a trend happening today. But directly moving machine learning algorithms which originally run on PC platform is not feasible for IoT devices due to their relatively limited computing power. In this paper, we first reviewed several representative approaches for enabling deep learning on mobile/IoT devices. Then we evaluated the performance and impact of these methods on IoT platform equipped with integrated GPU and ARM processor. Our results show that we can enable the deep learning capability on the edge of the IoT if we apply these approaches in an efficient manner. 
    more » « less